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In some sense, a lattice effect algebraE is a smeared orthomodular latticeS(E), which
then becomes the set of all sharp elements of the effect algebraE. We show that if
E is complete, atomic, and (o)-continuous, then a state onE exists iff there exists a
state onS(E). Further, it is shown that such an effect algebraE is an algebraic lattice
compactly generated by finite elements ofE. Moreover, every element ofE has a unique
basic decomposition into a sum of a sharp element and a⊕-orthogonal set of unsharp
multiples of atoms.
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1. INTRODUCTION

In “quantum probability theory” a carrier of a probability measure is a “quan-
tum logic,” which is an orthomodular lattice (or poset) if we assume noncompatible
events; that means events that can be tested separately but not simultaneously
(Kalmbach, 1983; Pt´ak and Pulmanov´a, 1991). Recently, effect algebras have
been introduced (Foulis and Bennett, 1994). The elements of an effect algebra
represent quantum effects which are important for quantum measurements theory.
In the fuzzy-probability setting the equivalent (in some sense) structure,D-poset
was introduced by Kˆopka (1992). Here elements represent fuzzy events which are
statistical events that may not be crisp or sharp. Thus quantum events and fuzzy
events have yes–no character that may be unsharp or imprecise (Gudder, 1998;
Jenc̆a and Rieˇcanová, 1999; Rieˇcanová, 2001a).

In general, an effect algebra is a partial algebra with two constants 0, 1
and a partial binary operation⊕ (orthogonal sum) satisfying very simple axioms
introduced in Section 2. Nevertheless, they are even finite effect algebras admitting
no orthogonally additive measure and hence no states or probabilities (Greechie,
1971; Riečanová, 2001b). Some positive results are also known. For instance,
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on complete modular ortholattices and complete modular atomic effect algebras
(see Kalmbach, 1983; Rieˇcanová, 1998, 2001c). In every effect algebra (E; ⊕, 0, 1)
we can introduce a partial order bya≤ b iff there is c∈ E with a⊕ c= b. If
(E;≤) is a lattice, thenE is called a lattice effect algebra, and if (E;≤) is a
complete lattice, thenE is called a complete effect algebra. In every lattice effect
algebra the subset of all sharp elements (elements withx∨ x′ = 1 or equivalently
x∧ x′ = 0) is a sublattice being an orthomodular lattice (Jen˘ca and Rieˇcanová,
1999; Riečanová, 2001a). In this sense we may speak about lattice effect algebras
as on smeared orthomodular lattices. It is important to note that every orthomodular
lattice (L; ∨, ∧, ′, 0, 1) can be itself organized into a lattice effect algebra if we
definea⊕ b=a∨ b iff a≤ b′. Then (L;⊕, 0, 1) is a lattice effect algebra in which
S(E)= E. Also conversely. Hence a lattice effect algebraE is an orthomodular
lattice iff S(E)= E.

Another important example of a lattice effect algebra can be derived from an
MV-algebra (M ; ⊕, ′, 0, 1) (Chang, 1958) if we define a partial binary operation
⊕̂ on M by a ⊕̂ b=a⊕ b iff a≤ b′. Then (M ; ⊕̂, 0, 1) is a lattice effect algebra in
whicha ⊕̂ (a′ ∧ b)= b ⊕̂ (b′ ∧a) for all a, b∈ E (thenE is called anMV-effect al-
gebra). Conversely, every lattice effect algebra (E; ⊕̂ , 0, 1) in whicha ⊕̂ (a′ ∧ b)=
b ⊕̂(b′ ∧a) for all a, b∈ E can be organized into anMV-algebra by putting
a⊕ b=a ⊕̂ (a′ ∧ b) for all a, b∈ E (Bennett and Foulis, 1995; Kˆopka and
Chovanec, 1995; Lazar and Marinov´a, 2001). In everyMV-effect algebra (MV-
algebra)E we haveS(E)=C(E), whereC(E) is the center ofE being a Boolean
algebra. Thus in the above-mentioned sense anMV-effect algebra (MV-algebra)E
is a smeared Boolean algebra. Moreover,E is a Boolean algebra iffE= S(E).

The aim of this paper was to find an answer to the question: Does the exis-
tence of a state on the setS(E) of sharp elements imply the existence of a state on
the whole effect algebraE? Or, find some families of effect algebras having these
properties.

We succeeded in finding a positive answer for all complete atomic
(o)-continuous effect algebras and a negative answer for a finite (not lattice or-
dered) effect algebra. Actually, in Section 6 we introduced an example of a finite
effect algebra admitting no states in spite of the fact thatS(E)={0, 1}. But the
question stated above is at present far from being completely solved.

Finally, note that examples of lattice effect algebras which are neither ortho-
modular lattices norMV-algebras are, for instance, a 0–1-pasting (horizontal sum)
of twoMV-algebras or a direct product of an orthomodular lattice and anMV-effect
algebra. Here, instead of all these structures, we consider derived effect algebras.

2. BASIC DEFINITIONS AND FACTS

Definition 2.1. A structure (E; ⊕, 0, 1) is called aneffect-algebraif 0, 1 are two
distinct elements and⊕ is a partially defined binary operation onP, which satisfies
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the following conditions for anya, b, c∈ E:

(i) b⊕a=a⊕ b if a⊕ b is defined,
(ii) (a⊕ b)⊕ c=a⊕ (b⊕ c) if one side is defined,
(iii) for every a∈ P there exists a uniqueb∈ P such thata⊕ b= 1 (we put

a′ = b), and
(iv) if 1 ⊕a is defined thena= 0.

We often denote the effect algebra (E; ⊕, 0, 1) briefly byE. In every effect
algebraE we can define the partial operationª and the partial order≤ by putting

a≤ b and bªa= c iff a⊕ c is defined anda⊕ c= b.

Sincea⊕ c=a⊕ d implies c= d, theª and the≤ are well defined. IfE with
the defined partial order is a lattice (a complete lattice), then (E;⊕, 0, 1) is called
a lattice effect algebra(a complete effect algebra). For more details we refer the
reader to Dvure˘censkij and Pulmannov´a (2000) and the references given there. We
review only a few properties without proof.

Lemma 2.2. Elements of an effect algebra(E;⊕, 0, 1)satisfy the properties:

(i) a⊕ b is defined iff a≤ b′,
(ii) a≤a⊕ b,
(iii) if a⊕ b and a∨ b exist then a∧ b exist and a⊕ b= (a∧ b)⊕ (a∨ b),
(iv) a⊕ b≤a⊕ c iff b≤ c and a⊕ c is defined,
(v) aª b= 0 iff a= b, and
(vi) a≤ b≤ c implies that cª b≤ cªa and bªa= (cªa) ª (cª b).

If E is a lattice effect algebra then
(vii) c≤a, b =⇒ (a∨ b)ª c= (aª c)∨ (bª c) and (a∧ b)ª c = (aª c)

∧(bª c),
(viii) a, b≤ c=⇒cª (a∨ b)= (cªa)∧ (cª b) and cª (a∧ b)= (cªa)∨

(cª b),
(ix) a, b≤ c′ =⇒ (a⊕ c)∨ (b⊕ c)= (a∨ b)⊕ c and(a∧ b)⊕ c= (a⊕ c)
∧ (b⊕ c).

It is worth noting that if (E;⊕, 0, 1) is an effect algebra, then (E;ª, 0, 1) with
the partial binary operationª defined above is aD-posetintroduced by Kˆopka
and Chovanec (1994), and vice versa.

Recall that a setQ⊆ E is called asubeffect algebraof the effect algebra
E if

(i) 1∈ Q, and
(ii) if out of elementsa, b, c∈ E with aª b= c two are inQ thena, b, c∈ Q.
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Assume that (E1;⊕1, 01, 11) and (E2;⊕2, 02, 12) are effect algebras. An injection
ϕ : E1→ E2 is called anembeddingiff ϕ(11)= 12 and for a, b∈ E1 we have
a≤ b′ iff ϕ(a)≤ (ϕ(b))′ in which caseϕ(a⊕1 b)=ϕ(a)⊕2 ϕ(b). We can easily
see that thenϕ(E1) is a subeffect algebra ofE2 and we say thatE1 andϕ(E1) are
isomorphic, or thatE1 is up to isomorphism a subeffect algebra of E2. We usually
identify E1 with ϕ(E1).

We say that a finite systemF = (ak)n
k=1 of not necessarily distinct elements

of an effect algebra (E; ⊕, 0, 1) is⊕-orthogonal ifa1⊕a2⊕ · · · ⊕ an (written⊕n
k=1 ak or

⊕
F) exists inE. Here we definea1⊕a2⊕ · · · ⊕ an= (a1⊕ a2⊕ · · ·

⊕an−1) ⊕an supposing that
⊕n−1

k=1 ak exists and
⊕n−1

k=1 ak≤a′n. An arbitrary sys-
temG= (aκ )κ∈H of not necessarily distinct elements ofE is called⊕-orthogonal
if
⊕

K exists for every finiteK ⊆G. We say that for a⊕-orthogonal system
G= (aκ )κ∈H the element

⊕
G exists iff

∨{⊕ K | K ⊆G finite} exists inE and
then we put

⊕
G= ∨{⊕ K | K ⊆G finite} (we writeG1⊆G iff there isH1⊆ H

such thatG1= (aκ )κ∈H1).
An effect algebra (E;⊕, 0, 1) is calledArchimedeanif for no nonzero element

e∈ E the elements

ne= e⊕ ⊕ e· · · ⊕ e︸ ︷︷ ︸
n times

exist for all n∈ N. An Archimedean effect algebra is called separable if every
⊕-orthogonalsystem of elements ofE is at most countable. We can show that
every complete effect algebra is Archimedean(Riečanová, 2000a).

For an elementx of an effect algebraE we write ord(x)=∞ if nxexists for
everyn∈ N. We write ord(x)= nx ∈ N if nx is the greatest integer such thatnxx
exists inE. Clearly, in an Archimedean effect algebranx < ∞ for everyx ∈ E.

Elementsx and y of a lattice effect algebra are calledcompatible(written
a↔ b) if x∨ y= x⊕ (yª (x∧ y)). If every two elements ofE are compatible then
E is called anMV-effect algebra. EveryMV-effect algebraM can be organized into
an MV-algebra by extending partial operation⊕ onto the total binary operation
⊕̂ by puttingx ⊕̂ y = x⊕ (x′ ∧ y) for all x, y∈M . In a lattice effect algebraE
every maximal subsetM ⊆ E of mutually compatible elements is a sublattice and
a subeffect algebra ofE. In fact M is anMV-effect algebra called block ofE.
Moreover,E is a union of its blocks (Rieˇcanová, 2000b).

Lemma 2.3. For elements of a lattice effect algebra E,

(i) if x ∧ y = 0 and for m, n∈ N the elements mx, ny, and mx⊕ ny
exist in E then(kx)∧ (ly) = 0 and (kx)⊕ (ly) = (kx)∨ (ly) for all k ∈
{1, . . . , m} and l∈ {1, . . . , n},

(ii) if Y ⊆ E with
∨

Y existing in E and x∈ E is such that x↔ y for all
y∈Y then x∧ (

∨
Y) =∨{x∧ y | y∈Y} and x↔ ∨

Y .
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Proof: (i) If ( mx) ⊕ (ny) is defined then (kx)⊕ (ly) is defined for allk∈
{1, . . . , m}, l ∈ {1, . . . , n}. By (i), x⊕ y = (x∨ y)⊕ (x∧ y) = x∨ y asx∧ y = 0.
By induction, supposing thatx ⊕ (ly) = x ∨ (ly) for all l ∈ {1, . . . , n− 1}, we
obtainx ⊕ ((l + 1)y)= (x ⊕ (ly))⊕ y= (x ∨ (ly))⊕ y= (x ⊕ y) ∨ ((l + 1)y) =
(x ∨ y) ∨ ((l + 1)y) = x ∨ (l + 1)y. It follows thatx ⊕ (ly) = x ∨ (ly) for all l ∈
{1, . . . , n}. The last implies that (ly)⊕ (kx) = (ly) ∨ (kx) and hence (kx) ∧ (ly) =
0 for all k ∈ {1, . . . , m} andl ∈ {1, . . . , n}.

(ii) For the proof we refer the reader to Jen˘ca and Rieˇcanová (1999). ¤

Definition 2.4. An elementx of an effect algebraE is calledsharpif x∧ x′ = 0.
SetS(E) = {x ∈ E | x∧ x′ = 0}.

3. ATOMIC LATTICE EFFECT ALGEBRAS

A nonzero element of an effect algebraE is called anatomif 0≤ b < a implies
b= 0. E is calledatomic if for every nonzero elementx ∈ E there is an atomp
of E such thatp≤ x. An elementu∈ E is called finite if there is a finite system
(ak)n

k=1 of not necessarily distinct atoms such thatu =⊕n
k=1 aκ .

lemma 3.1 (Riečanová, 2001e). Let (E; ⊕, 0, 1) be an Archimedean atomic
lattice effect algebra. Then for every nonzerox ∈ E

(i) there is a⊕-orthogonal system(aκ )κ∈H of atoms of E such that x=⊕
κ∈H aκ .

(ii) x =∨{u∈ E | u≤ x, u is finite}.

Recall that every lattice effect algebraE is homogeneous, i.e., for elements
a, b, c∈ E with a≤ b⊕ c≤a′ there are elementsu, v ∈ E such thatu≤ b, v≤ c,
anda= u⊕ v (see Jenˇca, 2001). Evidently, ifa, b, andc are atoms, thena= b or
a= c.

Lemma 3.1. Assume that(E,⊕, 0, 1) is an atomic lattice effect algebra and
a∈ E is an atom withord(a)= na ∈ N. Let S(E)={x ∈ E | x∧ x′ = 0}. Then

(i) (ka) ∧ (ka)′ 6= 0 for all κ ∈ {1, 2,. . . , na − 1},
(ii) naa ∈ S(E),
(iii) if x ∈ E with a≤ x≤ ka then there is r∈ N such that x= ra,
(iv) If a, b∈ E are atoms and k, l ∈ N are such that k6= na and ka= lb then

a= b and k= l,
(v) if u = (k1a1)⊕ (k2a2)⊕ · · · ⊕ (knan) where{a1, a2, . . . , an} is a set of

mutually distinct atoms of E then u=∨n
i=1(ki ai ).

For a proof we refer the reader to Rieˇcanová (2001d). Note only that condi-
tion (iii) follows from the fact that elementsa, 2a, . . . , naa andx are mutually
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compatible, and hence there is a blockM of E containing these elements. Since a
block is anMV-algebra, we obtain thatx= ra by the Riesz decomposition property
(Cattaneoet al., 2000). The proof of others is routine.

Theorem 3.3. Let (E;⊕, 0, 1)be an Archimedean atomic lattice effect algebra.
Then to every nonzero element x∈ E there are mutually distinct atoms aα ∈ E ,
α ∈ E , and integers kα such that

x =
⊕
{kαaα |α ∈ E} =

∨
{kαaα |α ∈ E}

under which x∈ S(E) iff kα = naα = ord(aα) for all α ∈ E .

Proof: Assumex ∈ E, x 6= 0. By Riečanová (2001e) there is a⊕-orthogonal
systemG = (a~)~∈H of atoms ofE such thatx=⊕G.

Let for everyα ∈ H , Kα = {~∈ H |a~ = aα} and letkα = |Kα| be the car-
dinal number ofKα. As E is Archimedean, we havekα ∈ N for everyα ∈ H .
Moreover, forα, β ∈ H we have eitherKα = Kβ or Kα ∩ Kβ = ∅. Let E =
{Kα |α ∈ H}. By axiom of choice there is a selection set{aκα | Kα ∈ E} such that
aκα = aα for every Kα ∈ E . We putG∗ = {kαaκα | Kα ∈ E}. Then to every finite
systemF ⊆G there is a finite setF∗ ⊆G∗ such that⊕

F ≤
⊕{

kαaκα | kαaκα ∈ F∗
} =∨{

kαaκα | kαaκα ∈ F∗
} ≤⊕G.

Moreover, to every finite setF∗ ⊆G∗ there is a finite systemF ⊆G such that⊕
F∗ =⊕ F . As x= ⊕G =∨{⊕ F | F ⊆G, F is a finite system}, we con-

clude that

x =
⊕{

kαaκα | Kα ∈ E
} =∨{

kαaκα | Kα ∈ E
}
.

Assume now thatx ∈ S(E). Thenx∧ x′ = 0, which gives

0=
(∨{

kαaκα | Kα ∈ E
}) ∧ (∧{(

kαaκα
)′ | Kα ∈ E

})
.

Because there exists (kαaκα )⊕ (kβaκβ ) for all Kα 6= Kβ , we havekαaκα ≤ (kβaκβ )
′

and hencekαaκα↔ kβaκβ . Using Lemma 2.3 (ii), we obtain

0=
∨

Kα∈E

(
kαaκα ∧

∧
Kβ∈E

(
kβaκβ

)′) = ∨
Kα∈E

(
kαaκα

) ∧ (kαaκα
)′

,

which gives that (kαaκα ) ∧ (kαaκα )
′ = 0 for all Kα ∈ E . It follows that kαaκα ∈

S(E), which implies thatkα = ord(aκα ) for everyKα ∈ E . ¤

4. COMPLETE ATOMIC ( o)-CONTINUOUS EFFECT ALGEBRAS
AND UNIQUE BASIC DECOMPOSITIONS OF ELEMENTS

The aim of this section is to show that every element in a complete atomic
(o)-continuous effect algebra has a unique basic decomposition into a sum of a
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sharp element and a⊕-orthogonal set of unsharp elements being multiples of
atoms. It is also shown that every such effect algebra is an algebraic lattice com-
pactly generated by finite elements.

We begin by recalling basic definitions.

Definition 4.1(Grätzer, 1998). An elementu of a complete latticeL is called
compactif u≤ ∨ D for someD⊆ L implies thatu≤ ∨ F for some finiteF ⊆ D.
A complete latticeL is calledalgebraic(or compactly generated) if every x ∈ L
is a join of compact elements ofL.

Assume that (E ;≺) is a directed set and (P;≤) is a poset. A net of elements
of P is denoted by (aα)α∈E . If aα ≤aβ for all α, β ∈ E such thatα≺β then we
write aα ↑. If moreovera =∨{aα |α ∈ E} we writeaα ↑a. The meaning ofaα ↓
andaα ↓a is dual. For instance,a↑ uα ≤ vα ↓ b means thatuα ≤ vα for all α ∈ E
anduα ↑a andvα ↓ b. We will write b≤aα ↑a if b≤aα for all α ∈ E andaα ↑a.

A net (aα)α∈E of elements of a poset (P;≤) order convergesto a pointa∈ P
if there are nets (uα)α∈E and (vα)α∈E of elements ofP such that

a↑ uα ≤aα ≤ vα ↓a.

We writeaα
(o)−→a in P (or brieflyaα

(o)−→a).

Definition 4.2. A lattice effect algebra (E; ⊕, 0, 1) is calledorder continuous
((o)-continuousfor brevity) if for any net of elements ofE andx, y∈ E : xα ↑ x⇒
xα ∧ y↑ x∧ y.

It is easily seen that in an (o)-continuous lattice effect algebraxα
(o)−→x,

yα
(o)−→y⇒ xα ∨ yα

(o)−→x∨ y andxα ∧ yα
(o)−→x∧ y. We need only consider that

xα ↑ x iff x′α ↓ x′ and that in every latticexα ↑ x, yα ↑ y⇒ xα ∨ yα ↑ x∨ y.

Theorem 4.3. Every complete(o)-continuous atomic effect algebra is compactly
generated by finite elements.

Proof: Assume thatu=a1⊕a2⊕ · · · ⊕ an, wherea1, . . . , an are not necessar-
ily different atoms of an effect algebraE. Further, letG⊆ E andu≤ ∨G. Let
E = {F ⊆G | F is finite} be directed by set inclusion and let for everyF ∈ E be
xF =

∨
F . ThenxF ↑ x= ∨G. As E is (o)-continuous, we havea1∧ xF ↑ x∧a1

=a1, which implies that there isF1∈ E such that for everyF ≥ F1, F ∈ E we have
a1≤ xF . Further for F ≥ F1, xF ªa1↑ xªa1 and hencea2∧ (xF ªa1)↑a2∧
(xªa1) = a2. It follows that there existsF2∈ E , F2≥ F1 such thata2≤ xF2

ªa1, which gives thata1⊕a2≤ xF2 ≤ xF for all F ≥ F2. By induction there are
Fκ ∈ E , k = 1, 2,. . . , n such thatFn≥ Fn−1≥ · · · ≥ F2≥ F1 anda1⊕a2⊕ · · · ⊕
an≤ xF n =

∨
Fn. As Fn is a finite subset ofG, this finishes the proof. ¤
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Theorem 4.4. The join of any two finite elements of a complete atomic(o)-
continuous effect algebra E is a finite element.

Proof: Assume thatu andv are finite elements ofE. By Theorem 3.3 there is
a set of atoms{aα |α ∈ E} and integerskα such thatu∨ v =⊕{kαaα |α ∈ E} =∨{kαaα |α ∈ E}. In view of Theorem 4.3 there are finite setsF1, F2⊆ E such that
u≤ ∨{kαaα |α∈ F1} and v≤ ∨{kαaα |α ∈ F2}. It follows that u∨ v≤∨{kαaα |α ∈ F1 ∪ F2} =

⊕{kαaα |α ∈ F1∪ F2}≤
∨{kαaα |α ∈ E} = u∨ v. We

conclude thatu∨ v= ⊕{kαaα |α ∈ F1∪ F2}, henceu∨ v is a finite element
of E. ¤

Theorem 4.5. Let E be a complete atomic(o)-continuous effect algebra.

(i) If for two sets of atoms of E{aα |α ∈A} and {bβ |β ∈B} and integers
kα 6= ord(aα) and kβ 6= ord(bβ) it is satisfied⊕

{kαaα |α ∈A} =
⊕
{lβbβ |β ∈B},

then for everyα ∈A there isβ ∈B such that aα = bβ and kα = lβ .
(ii) For every x∈ E, x 6= 0 there exists a unique w∈ S(E), a unique set
{aα |α ∈A} of atoms of E and unique integers kα 6= ord(aα) such that

x =
⊕
{kαaα |α ∈A} ⊕ w.

Moreover,(xªw)∧w = 0 and if u∈ S(E) with u≤ xªw then u= 0.

Proof: (i) Chooseα0∈A. As kα0 6= ord(aα0) we haveaα0 ≤ kα0aα0 ≤a′α0
. More-

over,kαaα ≤ (kα0aα0)
′ ≤ a′α0

for everyα 6=α0, α ∈A, because (kαaα)⊕ (kα0aα0)
is defined. Thus, with the notationx =⊕{kαaα |α ∈A} we haveaα0 ≤ x≤a′α0

,
which gives alsoaα0 ≤

⊕{lβbβ |β ∈B} =
∨{lβbβ |β ∈B}≤a′0. SinceE is com-

pactly generated by finite elements (Theorem 4.3), there is a finite setF ⊆B such
that

aα0 ≤
∨
{lβbβ |β ∈ F} =

⊕
{lβbβ |β ∈ F} ≤ a′α0

.

It follows that there isβ0∈ F such thataα0 = bβ0, becauseE is homogeneous.
Assume thatkα0 6= lβ0. Without loss of generality we can assume thatkα0 < l β0.
Then

x ª (kα0aα0) =
⊕
{lβbβ |β 6=β0, β ∈B} ⊕ (lβ0 − kα0

)
bβ0.

As bβ0 = aα0, we obtain thataα0 ≤ x ª (kα0aα0) ≤ a′α0
, which givesaα0 ≤

⊕
{kαaα |α 6=α0, α ∈A} ≤ a′α0

. In the same manner as above there isα1∈A,α1 6=α0

such thataα0 = aα1, a contradiction. This proves thatkα0 = lβ0. (ii) Set w =∨{z∈ S(E) | z≤ x}. Then w ∈ S(E), as S(E) is a complete lattice (Jen˘ca and
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Riečanová, 1999). Assume thatu∈ S(E) andu≤ xª w, which givesu≤ x. Then
u≤w∧ (xªw)≤w ∧ (1ªw) = w∧w′ = 0, which givesu= 0.

Further, ifxªw 6= 0 then by Theorem 3.3 there is a set{aα |α ∈A} of atoms
of E and there are integerskα such that

xªw =
⊕
{kαaα |α ∈A} =

∨
{kαaα |α ∈A}.

Assume that there isα ∈A such thatkα = ord(aα). Then kαaα ∈ S(E) and
kαaα ≤ x ª w, which giveskαaα = 0, a contradiction. Hencekα 6= ord(aα) for all
α ∈Aand in view of part (i) such set of atoms{aα |α ∈A}and integerskα 6= ord(aα)
are unique. ¤

In the remainder of this paper we mean the equality in (ii) of Theorem 4.5
when we speak about aunique basic decomposition of an element x of a complete
atomic(o)-continuous effect algebra E.

5. THE SMEARING THEOREM FOR STATES

Recall that a mapω : E→ [0, 1] is called a (finitely additive)stateon an
effect algebra (E; ⊕, 0, 1) if m(1)= 1 andx≤ y′ ⇒ ω(x⊕ y) = ω(x)+ ω(y). A
state isfaithful if ω(x) = 0⇒ x = 0. A stateω is called (o)-continuous(order-
continuous) if xα

(o)−→x⇒ ω(xα)→ ω(x) for every net (xα)α∈E of elements
of E.

Lemma 5.1. A stateω on an effect algebra E is(o)-continuous iff xα ↓ 0⇒
ω(xα) ↓ 0 for xα ∈ E.

For a proof we refer the reader to Rieˇcanová (2001c). Finally, recall that a map
ω : L → [0, 1] is a state on an orthomodular lattice (L; ∨, ∧, ′, 0, 1) iff ω(∧) = ∧
andω(x∨ y) = ω(x)+ ω(y) for all x≤ y′, x, y∈ L. Since for lattice effect algebra
(L; ⊕, 0, 1) derived from the orthomodular latticeL we havex⊕ y = x∨ y iff
x≤ y′, we conclude thatω is also a state on the effect algebraL.

For complete atomic (o)-continuous effect algebras, using Theorems 4.3 and
4.5, we can prove the followingSmearing Theoremfor states:

Theorem 5.2. For every complete(o)-continuous atomic effect algebra
(E;⊕, 0, 1)the following conditions are equivalent:

(1) There is a state on the orthomodular lattice S(E) = {x ∈ E | x∧ x′ = 0}.
(2) There is a state on E.
(3) There is an(o)-continuous state on E.
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Proof: (1)⇒ (2). Assume that a mapω : S(E)→〈0, 1〉 is a state onS(E) and let
us construct a statêω onE. To do this, we put for every atoma∈ E : ω̂ (a) = ω(naa)

na
.

As E is complete, which implies thatE is Archimedean, we havena < ∞ hence
ω̂ (a) is well defined. Further, for a nonzero finite elementu∈ E with the basic de-
compositionu = (

⊕n
i=1 ki ai )⊕ w (Theorem 4.3) we put̂ω(u) =∑n

i=1 ki ω̂(ai )+
ω(w). Then for all finiteu, v ∈ E with u≤ v′ we havêω(u⊕ v) = ω̂(u)+ ω̂(v),
which is clear according to the unique basic decomposition of elements ofE and
the facts that for atomsa, b, c∈ E andk 6= na, l 6= nb we have (ka)⊕ (lb) = ncc
iff a= b= c andk+ l = nc, and thatS(E) is a subeffect algebra ofE. This also
gives that for finite elements ofE we haveu1≤ u2⇒ ω̂(u1) ≤ ω̂(u2), because
u2ª u1 is also finite because of the fact thatE is compactly generated by finite
elements.

Let nowx ∈ E, x 6= 0, andUx = {u, ∈ E | u≤ x, u is finite}. LetF = {F,⊆
Ux | F is a finite set} and letuF =

∨
F for every F ∈F . By Theorem 4.4 every

uF is finite. Moreover,F is directed by set inclusion anduF ↑ x. We putω̂(x) =
sup{ω̂(uF ) | F ∈F}.

Assume now thatx, y∈ E are nonzero elements such thatx≤ y′. SetUx =
{u∈ E | u≤ x, u is finite}, Vy = {v ∈ E | v≤ y, v is finite} andF = {F ⊆Ux ∪
Vy | F is finite}. Further letuF =

∨
F ∩ Ux andvF =

∨
F ∩ Vy for everyF ∈F .

Then uF ↑ x, vF ↑ y and uF ⊕ vF ↑ x ⊕ y (see Rieˇcanová, 2001e). Let us put
Wx⊕y = {w ∈ E |w≤ x⊕ y, w is finite} and wD =

∨
D for every finite

D⊆Wx⊕ y. ThenwD ↑ x⊕ y and becauseE is compactly generated by finite
elements ofE, for every wD there is F ∈F and finite D∗ ⊆Wx⊕y such that
wD ≤ uF ⊕ vF ≤wD∗ , which gives ω̂(wD) ≤ ω̂(uF ⊕wF ) = ω̂(uF )+ ω̂(vF )≤
ω̂(wD∗ ). It follows thatω̂(x⊕ y) = sup{ω̂(uF )+ ω̂(vF ) | F ∈F} = ω̂(x)+ ω̂(y).
This proves that̂ω is a state onE, because 0, 1∈ S(E), which implies that
ω̂(0)= ω(0)= 0 andω̂(1)= ω(1)= 1.

(1) ⇒ (3). It suffices to show that the statêω constructed above is (o)-
continuous. Assume that for a net (xα)α∈E of elements ofE we havexα ↑ x.
As above, letUx = {u ∈ E | u≤ x, u is finite} and uF =

∨
F for every finite

set F ⊆ Ux. ThenuF ↑ x and becauseE is compactly generated by finite ele-
ments ofE, for everyuF there is a finite setDF ⊆ E andαF ∈ E with αF ≥α
for all α ∈ DF and such thatuF ≤

∨{xα |α ∈ DF }≤ xαF ≤ x, and consequently
ω̂(uF )≤ ω̂(xαF )≤ ω̂(x). Now using the definition of̂ω, we obtain that̂ω(x) =
sup{ω̂(uF ) | F ⊆Ux, F is finite} = sup{ω̂(xα) |α ∈ E}. This proves that̂ω is (o)-
continuous.

(3)⇒ (2)⇒ (1). This is clear, because forx, y∈ S(E) with x≤ y′ we have
x∧ y = 0 and hencex∨ y = x⊕ y, by Lemma 2.3. Thus a restriction of astate
ω defined onE ontoS(E) is a state onS(E). ¤

Remark. Note that we have actually proved that if on the setU of all finite
elements of a complete (o)-continuous atomic effect algebraE there is a bounded
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map ω :U→〈0,∞) such thatω(0)= 0 andω(u⊕ v) = ω(u)+ ω(v), for all
u≤ v′, u, v ∈U , then there exists an (o)-continuous state onE.

Finally, it is clear that the statêω on E, constructed in the proof of Theorem
5.2, is an extension of a stateω defined onS(E) iff ω is (o)-continuous. Further,
if ω is faithful thenω̂ is also faithful.

6. APPLICATIONS OF THE SMEARING THEOREM

In this section we indicate some families of effect algebras satisfying assump-
tions of the Smearing Theorem for states. We also introduce some applications.

6.1. Finite Lattice Effect Algebras

Theorem 5.2 can be applied on every finite lattice effect algebraE, be-
cause suchE is evidently complete atomic and (o)-continuous. For instance, we
obtain

On every finite lattice effect algebra E with S(E) being a Boolean algebra there
exists a (faithful) state.

On the other hand there is a finite effect algebraE (not lattice ordered) admitting
no states in spite of the fact thatS(E)={0, 1}.

Example(Riečanová, 2001b). LetE={0, a, b, c, 2a, 2b, 2c, 3b, 1} be an effect
algebra with 1=a⊕ b⊕ c= 3a= 3c= 4b (Fig. 1). This equality implies that for a
stateω on E should beω(a)=ω(c) = 1

3,ω(b) = 1
4, andω(a)+ ω(b)+ ω(c) = 1,

a contradiction. Evidently hereS(E)={0, 1}.

Fig. 1. An effect algebra admitting no states.
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6.2. Profinite Effect Algebras

We call an effect algebraE profinite if it is a direct product of finite lattice
effect algebrasE~. ~∈ H , whereH 6= ∅ is an arbitrary. This means thatE is a
Cartesian product

∏
~∈H E~ with “coordinatewise” defined⊕, 0, and 1 and thus

also≤, ∨, and∧. Clearly,every profinite effect algebra is complete, atomic, and
(o)-continuous, and hence it satisfies assumptions of Theorem 5.2. It is easy to
check that a complete atomic effect algebraE is profinite iff the centerC(E) of E
is atomic and there is only a finite set of elements ofE under every atom ofC(E).
More detailed. thenE is isomorphic to the direct product

∏
~∈H . [0, p~], where

{p~ |~∈ H} is the set of all atoms ofC(E) and [0.p~] for ~∈ H is a finite lattice
effect algebra with⊕ inherited fromE (see Rieˇcanová, 2001d).

6.3. Complete Atomic (o)-Continuous Effect Algebras With S(E)
Being a Boolean Algebra

In view of Lemma 3.2 and Theorem 3.3 we obtain thatS(E) is atomic. Thus
if S(E) is a Boolean algebra, then there exists a state onS(E) which gives by
Theorem 5.2 that

On every complete atomic(o)-continuous effect algebra E with S(E) being a
Boolean algebra there exists an(o)-continuous state.

Important example of such an effect algebra is every complete atomicMV
-effect algebra (MV -algebra)E. It is because in anMV -effect algebraE we have
S(E) =C (E), whereC(E) is a center ofE, which is a Boolean algebra (Greechie
et al., 1995). Really, ifz∈C (E)then 1= (1∧ z) ∨ (1∧ z′) = z∨ z′, which gives
z∧ z′ = 0 and hencez∈ S(E). Conversely, ifz∈ S(E) then z∧ z′ = 0, which
givesz∨ z′ = 1 and hence asE is distributivex= 1∧ x = x∧ (z∨ z′) = (x∧ z) ∨
(x∧ z′), which z∈C(E). Since everyMV-effect algebra is (o)-continuous (by
Lemma 2.3, (ii)) we obtain that

On every complete atomic MV-effect algebra(MV-algebra) there is an (o)-
continuous state.

Further example of a lattice effect algebra withS(E)=C(E) is every dis-
tributive effect algebra. By Theorem 5.2,

On every distributive complete atomic effect algebra there is an(o)-continuous
state.

6.4. Complete Atomic Modular Effect Algebras

In Riečanová (2001d) it was shown that every complete atomic modular
effect algebraE is (o)-continuous, henceE satisfies conditions of Theorem 5.2.
Moreover, in suchE the S(E) is a complete modular atomic ortholattice. IfE
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Fig. 2. Modular effect algebra admitting nonsubadditive states.

is separable thenS(E) is also separable and by Rieˇcanová (1998) there is an
(o)-continuous faithful state onS(E). It follows, by Theorem 5.2 that there is an
(o)-continuous faithful state onE (see Rieˇcanová, 2001d).

7. CONCLUDING REMARKS

A stateω on a lattice effect algebraE is called avaluation if for all a,
b∈ Eω(a∨ b)+ ω(a∧ b) = ω(a)+ ω(b). It was proved in Rieˇcanová (2001d)
that a stateω on E is a valuation iffω is subadditive, i.e.,ω(a∨ b)≤ω(a)+ ω(b)
for all a, b∈ E. Moreover, if a faithful valuation on a lattice effect algebraE exists
thenE is modular. Next example shows that if in Theorem 5.2 a stateω on S(E)
is subadditive (hence a valuation) then the stateω̂ constructed in the proof need
not be subadditive onE even if E is modular.

Example. Let E={0, a, b, c, 1} be a modular effect algebra in which 1=a⊕
b = 2c (Fig. 2). ThenS(E) = {0, a, b, 1} and soω : S(E)→ [0, 1] such that
ω(a) = 1

3, ω(b) = 2
3, ω(0)= 0, andω(1)= 1 is a subadditive state onS(E). But

ω̂ : E→ 〈0, 1〉 such that̂ω|S(E) = ω and ω̂(c) = 1
2 is not subadditive because

ω(a)+ ω(c) < ω(a∨ c). Nevertheless, there is a unique valuation onE, namely
m(a) = m(b) = m(c) = 1

2 andm(0)= 0, m(1)= 1.
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