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In some sense, a lattice effect algeBré&s a smeared orthomodular latti6€E), which
then becomes the set of all sharp elements of the effect algebvde show that if
E is complete, atomic, ana)-continuous, then a state dn exists iff there exists a
state onS(E). Further, it is shown that such an effect algeBr#& an algebraic lattice
compactly generated by finite element&oMoreover, every element & has a unique
basic decomposition into a sum of a sharp element apebathogonal set of unsharp
multiples of atoms.
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1. INTRODUCTION

In “quantum probability theory” a carrier of a probability measure is a “quan-
tum logic,” which is an orthomodular lattice (or poset) if we assume noncompatible
events; that means events that can be tested separately but not simultaneously
(Kalmbach, 1983; Rk and Pulmana;” 1991). Recently, effect algebras have
been introduced (Foulis and Bennett, 1994). The elements of an effect algebra
represent quantum effects which are important for quantum measurements theory.
In the fuzzy-probability setting the equivalent (in some sense) strudbspnset
was introduced by Kpka (1992). Here elements represent fuzzy events which are
statistical events that may not be crisp or sharp. Thus quantum events and fuzzy
events have yes—no character that may be unsharp or imprecise (Gudder, 1998;
Jerca and Rieanow, 1999; Rieanow, 2001a).

In general, an effect algebra is a partial algebra with two constants 0, 1
and a partial binary operatiah (orthogonal sum) satisfying very simple axioms
introduced in Section 2. Nevertheless, they are even finite effect algebras admitting
no orthogonally additive measure and hence no states or probabilities (Greechie,
1971; Rieanowd, 2001b). Some positive results are also known. For instance,
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on complete modular ortholattices and complete modular atomic effect algebras
(see Kalmbach, 1983; Riahowd, 1998, 2001c). In every effect algebEs @, 0, 1)

we can introduce a partial order lay< b iff there isce E with a®c=b. If

(E; <) is a lattice, thenE is called a lattice effect algebra, and E(<) is a
complete lattice, thek is called a complete effect algebra. In every lattice effect
algebra the subset of all sharp elements (elementsxwitit’ =1 or equivalently

X A X' =0) is a sublattice being an orthomodular lattice ¢keahd Rieanow,

1999; Rieanowd, 2001a). In this sense we may speak about lattice effect algebras
as on smeared orthomodular lattices. Itis important to note that every orthomodular
lattice (L; Vv, A,’, 0, 1) can be itself organized into a lattice effect algebra if we
definea@b=av biff a<b’. Then L; &, 0, 1) is a lattice effect algebra in which
S(E) = E. Also conversely. Hence a lattice effect algelras an orthomodular
lattice iff S(E) = E.

Another important example of a lattice effect algebra can be derived from an
MV-algebra M; @, ’, 0, 1) (Chang, 1958) if we define a partial binary operation
donMbyadb=a@biff a<b. ThenM; &, 0, 1) is a lattice effect algebra in
whicha® (&’ Ab)=b® (b Aa)foralla, b e E (thenE is called arMV-effect al-
gebra). Conversely, every lattice effect algeti#ad® , 0, 1) in whicha & (&’ A b) =
b®(b' Aa) for all a, be E can be organized into akV-algebra by putting
a®db=ad (@ Ab) for all a, be E (Bennett and Foulis, 1995; dpka and
Chovanec, 1995; Lazar and Marirmv2001). In evenMV-effect algebra V-
algebra)E we haveS(E) = C(E), whereC(E) is the center oE being a Boolean
algebra. Thus in the above-mentioned sendd¥reffect algebraNiV-algebra)E
is a smeared Boolean algebra. Moreo¥eis a Boolean algebra ift = S(E).

The aim of this paper was to find an answer to the question: Does the exis-
tence of a state on the s8¢E) of sharp elements imply the existence of a state on
the whole effect algebr&? Or, find some families of effect algebras having these
properties.

We succeeded in finding a positive answer for all complete atomic
(0)-continuous effect algebras and a negative answer for a finite (not lattice or-
dered) effect algebra. Actually, in Section 6 we introduced an example of a finite
effect algebra admitting no states in spite of the fact ®&) = {0, 1}. But the
guestion stated above is at present far from being completely solved.

Finally, note that examples of lattice effect algebras which are neither ortho-
modular lattices noMV-algebras are, for instance, a 0—1-pasting (horizontal sum)
of two MV-algebras or a direct product of an orthomodular lattice ard\&reffect
algebra. Here, instead of all these structures, we consider derived effect algebras.

2. BASIC DEFINITIONS AND FACTS

Definition 2.1. A structure E; &, 0, 1) is called areffect-algebraf 0, 1 are two
distinct elements an@ is a partially defined binary operation &) which satisfies
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the following conditions for ang, b, c€ E:

() boa=aebif adbis defined,
(i) (apb)ydc=aa (bac)if one side is defined,
(iii) for every a e P there exists a uniquee P such thaa® b=1 (we put
a’ =h), and
(iv) if 1 @ ais defined them =0.

We often denote the effect algebig;(@®, 0, 1) briefly byE. In every effect
algebrak we can define the partial operatienand the partial ordex by putting

a<b and boa=c iff ad cis defined andhc=b.

Sincea®c=add impliesc=d, theo and the< are well defined. IfE with

the defined partial order is a lattice (a complete lattice), therd, 0, 1) is called
alattice effect algebrda complete effect algebyaFor more details we refer the
reader to Dvureénskij and Pulmann@(2000) and the references given there. We
review only a few properties without proof.

Lemma 2.2. Elements of an effect algeb(&; @, 0, 1)satisfy the properties:

() a®bisdefinediffa<by,

(i) a<a@b,

(i) ifae®bandavbexistthenanb existandapb=(aAnb)® (avbh),

(iv) adb=<a®ciffb<canda®cis defined,

(v) aeb=0iffa=b, and

(vi) a<b=<cimpliesthateb<ceoaandboa= (cea) & (ceb).
If E is a lattice effect algebra then

(vi) c<a,b= (avb)ec=(aoc)v(bec)and(arb)ec=(aoC)

A(bec),
(vii) a,b<c=co(avbh)=(coa)Aa(cob)andco(arb)=(coa)Vv
(ceb),
(iX) a,b<c = (@adc)v(bdc)=(avb)ydcandarb)ydc=(adc)
A(bec).

Itis worth noting that if €; @, 0, 1) is an effect algebra, theB{©, 0, 1) with
the partial binary operatio® defined above is ®-posetintroduced by Kpka
and Chovanec (1994), and vice versa.

Recall that a seQ C E is called asubeffect algebraf the effect algebra
E if

() 1eQ,and
(i) ifoutof elements, b, ce Ewithae b=ctwo areinQthena,b,ce Q.
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Assume thatE;; @1, 01, 1;) and E; @2, 0,, 1) are effect algebras. An injection
¢ . E;— E; is called anembeddingff ¢(1;)=1, and fora, be E; we have
a<b iff (@) < (p(b)) in which casep(a®;b)=¢(a) ®, ¢(b). We can easily
see that thep(E;) is a subeffect algebra &, and we say thaE; andg(E;) are
isomorphig or thatE; is up to isomorphism a subeffect algebra of Be usually
identify E; with ¢(E3).

We say that a finite systeifd = (ac);_, of not necessarily distinct elements
of an effect algebraK; @, 0, 1) is@-orthogonal ifa; ®a, @ --- & an (written
Dr_,aor F)existsinE. Here we definey @ a, @ @ an=(u D ar @ --

@ an_1) ® a, supposing tha@P_1 a, exists andP;_; a < &,. An arbitrary sys-
temG = (a,).cn Of Not necessarily distinct elementsibfis calledg-orthogonal
if @ K exists for every finiteK € G. We say that for ab-orthogonal system
G = (& )«en the elementp G exists iff \/{P K | K C G finite} exists inE and
thenwe puth G = \/{P K | K € G finite} (we writeG; < G iff thereisH; C H
such thaiG, = (8 )xeH,)-

An effect algebralt; &, 0, 1) is calledArchimedeairif for no nonzero element
ec E the elements

ne=eo oe---de
N

n times

exist for allne N. An Archimedean effect algebra is called separable if every
@-orthogonalsystem of elements dE is at most countable. We can show that
every complete effect algebra is Archimedé@aie¢anod, 2000a).

For an element of an effect algebr& we write ordi) = oo if nx exists for
everyn € N. We write ord&) =ny € N if ny is the greatest integer such thmgix
exists inE. Clearly, in an Archimedean effect algebma< oo for everyx € E.

Elementsx andy of a lattice effect algebra are calledmpatible(written
a<h)ifxvy=xa®(ye (xAy)).Ifeverytwo elements dE are compatible then
E is called arMV-effect algebraEveryMV-effect algebravl can be organized into
an MV-algebra by extending partial operatienonto the total binary operation
® by puttingx®y = x@® (X' Ay) for all x, y € M. In a lattice effect algebr&
every maximal subsé¥l € E of mutually compatible elements is a sublattice and
a subeffect algebra dt. In fact M is an MV-effect algebra called block dE.
Moreover,E is a union of its blocks (Re&anod, 2000b).

Lemma 2.3. For elements of a lattice effect algebrag E

(i) if xAy=0and for m ne N the elements mxny, and mx® ny
exist in E thenkx) A (ly) = 0 and(kx) @ (ly) = (kx) v (ly) for all k €
{1,...,m}andle{l,...,n},

(i) if Y CE with\/ Y existing in E and x E is such that x>y for all
yeY thenxA (\VY)=V{xAy|yeY}and x< VY.



Smearings of States Defined on Sharp Elements Onto Effect Algebras 1515

Proof: (i) If (mx) & (ny) is defined thenkx) ® (ly) is defined for allk
{1,...,mhLle{l,...,n).By(i),x®dy=XVy)®d(XAy)=xVvyasxAy=0.
By induction, supposing that® (ly) = x v (ly) forall | € {1,...,n— 1}, we
obtainx ® (| + L)y)=(xad(y)dy=xVvy)ey=xaoy) Vv (( +1)y) =
xXvy)Vv((+21y) =xv(+1)y.Iltfollowsthatx & (Iy) = x v (ly) foralll €
{1,..., n}. Thelastimpliesthaty) & (kx) = (ly) v (kx) and hencekx) A (ly) =
Oforallk € {1,...,m}andl € {1,...,n}.
(i) For the proof we refer the reader to dandnd Rieanow (1999). O

Definition 2.4. An elementx of an effect algebr& is calledsharpif x A X’ =0.
SetS(E) = {xe E | x AX' =0}.

3. ATOMIC LATTICE EFFECT ALGEBRAS

A nonzero element of an effect algelias called aratomif 0 < b < aimplies
b=0. E is calledatomicif for every nonzero element € E there is an atonp
of E such thatp < x. An elementu € E is called finite if there is a finite system
(a)i_, of not necessarily distinct atoms such that Py_, a,.

lemma 3.1 (RieCanowd, 2001e) Let (E; &, 0, 1) be an Archimedean atomic
lattice effect algebra. Then for every nonzera E

(i) there is a®-orthogonal systenfa,).cn of atoms of E such that x

@KEH e
(i) x=\{ueE |u=<x,uis finitg.

Recall that every lattice effect algebEais homogeneoys.e., for elements
a, b, ce Ewitha<bd®c<a there are elements v € E such thau <b, v <c,
anda=u®vV (see Jecd, 2001). Evidently, i, b, andc are atoms, thea=b or
a=c.

Lemma 3.1. Assume thafE, @, 0, 1) is an atomic lattice effect algebra and
ac E is an atom wittord@) =n; € N. Let E) ={x € E | x AX'=0}. Then

(i) (ka) A (ka) # Oforall x € {1, 2,...,ny — 1},
(i) naa e YE),
(iii) if x € E with a< x <ka then there is € N such that x=ra,
(iv) Ifa, be E are atoms and M € N are such that k£ n, and ka=Ib then
a=band k=1,
(V) if u = (kia1) & (koap) @ - - - ® (knan) wWhere{ay, az, ..., an} is a set of
mutually distinct atoms of E thens \/inzl(ki ).

For a proof we refer the reader to Raowd (2001d). Note only that condi-
tion (iii) follows from the fact that elements, 2a, ..., nja andx are mutually
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compatible, and hence there is a blddkof E containing these elements. Since a
block is anMV-algebra, we obtain that=ra by the Riesz decomposition property
(Cattanecet al,, 2000). The proof of others is routine.

Theorem 3.3. Let(E; &, 0, 1)be an Archimedean atomic lattice effect algebra.
Then to every nonzero elemeng E there are mutually distinct atoms, & &,
a € &, and integers k such that

x=Plkeae e} =\/{kay | e&)
under which xe S(E) iff k, = n,, = ord(a,) forall « € €.

Proof: Assumex e E, x#0. By Riecanowd (2001e) there is &-orthogonal
systemG = (a,)xen Of atoms ofE such thaix = & G.

Let for everya e H, K, = {x € H | a, = a,} and letk, = |K,| be the car-
dinal number ofK,. As E is Archimedean, we havk, € N for everya € H.
Moreover, fore, e H we have eithelK, = Kg or K, NKg=0. Let £ =
{Kq | € H}. By axiom of choice there is a selection $at, | K, € £} such that
a,, = g, for everyK, € £. We putG* = {k,a,, | K, € £}. Then to every finite
systemF C G there is a finite seff* € G* such that

PDF < P {a lka, € F} =\ {ka, Ika, e F'} <PG.
Moreover, to every finite sefe* C G* there is a finite systerir € G such that
PF =PF. Asx=EhGC=\V{PF|F <G, Fis afinite systeth we con-
clude that

x =P {ket, | Ka €€} = \/ (ke | Ka € E}.

Assume now thax € S(E). Thenx A X’ = 0, which gives

0=(\/{kao 1K€ €}) A (A (ki) 1Kae}).

Because there existk.@,,) ® (Ksa,,) for all K, # Kz, we havek,a,, < (Ksa.,)
and hence,a,, <> ksa,,. Using Lemma 2.3 (i), we obtain

0=V (kaw n A (5i20)) = V (o) A ()’

which gives that K,a,, ) A (k.a.,) = 0 for all K, € £. It follows thatk,a,, €
S(E), which implies thak, = ord(a,,) for everyK, €&. O

4. COMPLETE ATOMIC ( 0)-CONTINUOUS EFFECT ALGEBRAS
AND UNIQUE BASIC DECOMPOSITIONS OF ELEMENTS

The aim of this section is to show that every element in a complete atomic
(0)-continuous effect algebra has a unique basic decomposition into a sum of a
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sharp element and @-orthogonal set of unsharp elements being multiples of
atoms. It is also shown that every such effect algebra is an algebraic lattice com-
pactly generated by finite elements.

We begin by recalling basic definitions.

Definition 4.1(Gratzer, 1998). An element of a complete latticd is called
compacif u < \/ D forsomeD C L implies thatu < \/ F for some finiteF C D.
A complete latticel is calledalgebraic(or compactly generatedf every x € L
is a join of compact elements af

Assume thatq; <) is a directed set and™ <) is a poset. A net of elements
of P is denoted byd,).ec. If a, <&y for all «, 8 € £ such thatx < g then we
write a, *. If moreovera = \/{a, | « € £} we writea, 1 a. The meaning o4, |
anda, | a is dual. For instanceg 4 u, <V, | b means thau, <v, foralla € £
andu, taandv, | b. We willwriteb<a, taif b<a, forall « € £ anda, 1 a.

A net (a,).ce Of elements of a poseP( <) order converge$o a pointa € P
if there are netsu,)cc and ¢, )qce Of elements of such that

atuy <ay,<Vqla

We Writeaaﬂa in P (or brieflyaaﬂ»a).

Definition 4.2. A lattice effect algebraK; &, 0, 1) is calledorder continuous
((0)-continuousdor brevity) if for any net of elements d&& andx,y € E: X, 1 X =

Xa ANYTXAY.

It is easily seen that in aro)-continuous lattice effect algebm,ﬂx,

yaﬂy = Xy V yagx Vyandx, A yaﬂX/\ y. We need only consider that
Xe T X iff X! | x" and that in every lattic&, 1+ X, Yo 1Y = Xo V Ya T XV Y.

Theorem 4.3. Every completéo)-continuous atomic effect algebra is compactly
generated by finite elements.

Proof: Assumethat=a;®a>®--- ® a,, whereay, ..., a, are not necessar-
ily different atoms of an effect algebia. Further, letG C E andu < \/ G. Let
& = {F C G| Fisfinite} be directed by set inclusion and let for eve¥y £ be
xg =\ F.Thenxg + x=\/ G. AsE is (0)-continuous, we have A Xg 1 X A &y

= ay, which implies that there iB; € £ such that for every > F;, F € £ we have
a3 < Xg. Further forF > F;, xp ©a; 1 x©a and hences; A (X 6 a&1) Tax A
(x©ea;) = ap. It follows that there existd, &, F,> F; such thata; < X,

© aj, which gives thaty @ a; < Xg, < Xg for all F > F,. By induction there are
F.e£,k=1,2,...,nsuchthaF,>F,_1> --- > FH>Fandy®a®d -
an <Xpgn =\ Fn. As Fy is a finite subset 06, this finishes the proof. O
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Theorem 4.4. The join of any two finite elements of a complete ato(n)e
continuous effect algebra E is a finite element.

Proof: Assume thati andv are finite elements of. By Theorem 3.3 there is
a set of atomga, |« € £} and integerk, such thatuvv = Plka, e €&} =
V{ksay | @ € £}. In view of Theorem 4.3 there are finite sés F, C £ such that
u< V{kya, lae F1} and v< \/{ka,|aeF,}. It follows that uvv=<
Vikeae la e FLU R} = Pikeay la e FLUF) < ke e €} =uvv. We
conclude thatuvv= Pik,a, | € FLUF,}, henceuvyv is a finite element
ofE. O

Theorem 4.5. Let E be a complete atom({o)-continuous effect algebra.

(i) If for two sets of atoms of fa, |« € A} and {bg | 8 € B} and integers
ko # ord(a,) and ks 7 ord(bg) it is satisfied

Pikaa, |« e A} = @llghgs | B € B,

then for everyr € A there isp € B such that @ =bg and k, = 1.
(i) For every xe E, x#0 there exists a unique w S(E), a unique set
{a, |« € A} of atoms of E and unique integerg# ord(a,) such that

x=€B{kaaa|aeA}®W.

Moreover,(x o w) Aw = 0 and if ue S(E) with u<x & w then u=0.

Proof: (i) Choosexo € A. Ask,, # ord(a,,) we havea,, < ky,a,, <&, . More-
over, k,a, < (Kyy,) < &, for everya #ao, o € A, becausek,a,) ® (Ky,au,)
is defined. Thus, with the notation= Pik.a, |« € A} we havea,, <x<a, ,
which gives als@,, < @{lgbg | B € B} = \/{lgbg | B € B} < aj. SinceE is com-
pactly generated by finite elements (Theorem 4.3), there is a finite sdf such
that

aw, < \/lgbs | BeF) = Pllgby | BeF) < &, .

It follows that there isp € F such thata,, = bg,, becauseE is homogeneous.
Assume thak,, #14,. Without loss of generality we can assume tkgt< | 4.
Then

X © (KupBao) = EP1sbs | B o, B € BY (1, — Kao) b
As bg, = a,,, we obtain thata,, <X © (Kyau,) < &, Which givesa,, <

{Kedo @ # a0, ¢ € A} < &, . Inthe same manner_as above thergis A, a1 # ag
such thata,, = a,,, a contradiction. This proves th#, = lg,. (ii) Setw =

V{ze S(E)|z=<x}. Thenw € S(E), as S(E) is a complete lattice (Jea and
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RieCanow, 1999). Assume thate S(E) andu < x & w, which givesu < x. Then
uswAaxoew)<wa (lew)=waAw =0, which givesu=0.

Further, ifx ©w #£ 0 then by Theorem 3.3 there is a ¢&t | « € A} of atoms
of E and there are integeks such that

xow = (Pikay lae A} = \/{kao|a e A

Assume that there is € A such thatk, = ord(@,). Then k,a, € S(E) and
k.8, <X & w, which givesk,a, = 0, a contradiction. Hende, # ord(a,) for all
a € Aandinview of part (i) such set of atorf®, | @ € A} and integerg,, # ord(a,)
are unique. O

In the remainder of this paper we mean the equality in (ii) of Theorem 4.5
when we speak aboutumique basic decomposition of an element x of a complete
atomic(o)-continuous effect algebra.E

5. THE SMEARING THEOREM FOR STATES

Recall that a mam: E — [0, 1] is called a (finitely additivetateon an
effect algebraf; @, 0, 1) ifm(1)=1andx <y = o(X DY) = o(X) + o(y). A
state isfaithful if a)gx) = 0= x = 0. A statew is called ¢)-continuous(order-

: . (0)
continuouy if x,—>X = w(X,) = w(x) for every net X,).ce Of elements
of E.

Lemma 5.1. A statew on an effect algebra E igo)-continuous iff ¥ | 0 =
(%) | Oforx, € E.

For a proof we refer the reader to R&@io\d (2001c). Finally, recall thata map
w:L — [0, 1]is a state on an orthomodular lattide; {/, A,’, 0, 1) iff w(A) = A
andw(x Vy) = o(x) + w(y) forallx <y, x,y € L. Since for lattice effect algebra
(L; @, 0, 1) derived from the orthomodular lattitewe havex @ y = x v y iff
X <V, we conclude thab is also a state on the effect algeltra

For complete atomiad]-continuous effect algebras, using Theorems 4.3 and
4.5, we can prove the followin§mearing Theorerior states:

Theorem 5.2. For every complete(o)-continuous atomic effect algebra
(E; &, 0, 1)the following conditions are equivalent:

(1) Thereis a state on the orthomodular latticéE} = {x € E | x A X' = 0}.
(2) There is a state on E.
(3) There is an(0)-continuous state on E.
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Proof: (1)= (2). Assumethatamap: S(E) — (0, 1) is a state orf5(E) and let
us construct a stateon E. To do this, we put for every atoene E : @ (a) = @
As E is complete, which implies thd is Archimedean, we have, < oo hence
 (a) is well defined. Further, for a nonzero finite elemet E with the basic de-
compositioru = (', kia;) @ w (Theorem 4.3) we pub(u) = >, kio(a) +
w(w). Then for all finiteu, v € E with u <V’ we havew(u @ v) = @(u) + o(v),
which is clear according to the unique basic decomposition of elemeiitsaofl
the facts that for atoma, b, c € E andk # n,, | # np we have ka) & (Ib) = n.c
iff a=b=candk+I| = n¢, and thatS(E) is a subeffect algebra d&. This also
gives that for finite elements df we haveu; < u, = ®(u;) < @(u,), because
Uz © U is also finite because of the fact thatis compactly generated by finite
elements.

Letnowx € E, x#£0, andi/y = {u, € E|u <X, uisfinite}. Let F = {F, C
Ux | F is afinite set and letug = \/ F for everyF € 7. By Theorem 4.4 every
ur is finite. Moreover,F is directed by set inclusion ang: 1 x. We puta(x) =
supgw(ug) | F € F}.

Assume now thak, y € E are nonzero elements such that y'. Setlly =
{fue Elu=<x, uisfinite}, Vy ={ve E|v<y, v isfinite} and F = {F Sl U
Vy | F is finite}. Further leur = \/ F NUy andvg = \/ F NV for everyF € F.
Thenug +X,Ve 1y andug & Ve + X ® y (see Rieanowd, 2001e). Let us put
Wiey ={WeE|w=<x®y,w isfinitey and wp =\/D for every finite
D SWygy. Thenwp 1 x @y and becausé& is compactly generated by finite
elements ofE, for everywp there isF € 7 and finite D* € W,gy, such that
Wp < Ufr ® Vg <Wp:, Which givesw(wp) < &(Ug ®Wg) = @(Ug) + &(VE) <
o(wWp-). It follows thatw(Xx @ y) = sup@(ug) + o(Ve) | F € F} = @(X) + o(y).
This proves that is a state onE, because 0, & S(E), which implies that
®(0) = w(0) = 0 andw(1) = w(1) = 1.

(1) = (3). It suffices to show that the stafe constructed above i)-
continuous. Assume that for a net,J.cc Of elements ofE we havex, 1 x.
As above, lettdy = {u € E|u<x, uisfinite} andug =\/ F for every finite
setF C Uy. Thenug 1 x and becaus& is compactly generated by finite ele-
ments ofE, for everyug there is a finite seDr C £ andafF € £ with afF >«
for all @« € D and such thatie < \/{X, | @ € Dg} < X, <X, and consequently
®(UF) < D(X4:) <@(x). Now using the definition ofs, we obtain that(x) =
sugo(ug) | F CUy, F isfinite} = sug@(x,) | @ € £}. This proves thab is (0)-
continuous.

(3)= (2) = (1). This is clear, because far y € S(E) with x <y’ we have
XAy =0andhencxvy=x@®y, by Lemma 2.3. Thus a restriction ofstate
o defined onE onto S(E) is a state or§(E). O

Remark. Note that we have actually proved that if on the &ebf all finite
elements of a complete)-continuous atomic effect algebEathere is a bounded
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map o :U — (0, 00) such thatw(0) = 0 and w(u ® V) = w(u) + w(v), for all
u=<v’,u,vel,then there exists am)-continuous state oE.

Finally, it is clear that the sta#® on E, constructed in the proof of Theorem
5.2, is an extension of a stadedefined onS(E) iff w is (0)-continuous. Further,
if w is faithful thena is also faithful.

6. APPLICATIONS OF THE SMEARING THEOREM

In this section we indicate some families of effect algebras satisfying assump-
tions of the Smearing Theorem for states. We also introduce some applications.

6.1. Finite Lattice Effect Algebras

Theorem 5.2 can be applied on every finite lattice effect algéhrde-
cause sucl is evidently complete atomic and)¢continuous. For instance, we
obtain

On every finite lattice effect algebra E with S(E) being a Boolean algebra there
exists a (faithful) state

On the other hand there is a finite effect algebrénot lattice ordered) admitting
no states in spite of the fact th&E) = {0, 1}.

Examplg(RieCanowd, 2001b). LeE ={0,a, b, c, 2a, 2b, 2c, 3b, 1} be an effect
algebrawith =a @ b ® c=3a=3c=4b(Fig. 1). This equality implies that for a
statew on E should bav(a) = w(c) = % w(b) = %1, andw(a) + w(b) + w(c) = 1,

a contradiction. Evidently her§(E) = {0, 1}.

l1=4b=a®dbPc=3a=3c

Fig. 1. An effect algebra admitting no states.
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6.2. Profinite Effect Algebras

We call an effect algebr& profinite if it is a direct product of finite lattice
effect algebras,,. € H, whereH #£ ¢ is an arbitrary. This means thét is a
Cartesian produdt],,.,; E, with “coordinatewise” define@, 0, and 1 and thus
also<, v, andA. Clearly,every profinite effect algebra is complete, atomic, and
(o)-continuous and hence it satisfies assumptions of Theorem 5.2. It is easy to
check that a complete atomic effect algebras profinite iff the cente€C(E) of E
is atomic and there is only a finite set of element&afnder every atom o€ (E).

More detailed. therk is isomorphic to the direct produgf, .. [0, p,], where
{px | ¢ € H} is the set of all atoms d@(E) and [Q p,] for x € H is a finite lattice
effect algebra with inherited fromE (see Rieanow, 2001d).

6.3. Complete Atomic )-Continuous Effect Algebras With S(E)
Being a Boolean Algebra

In view of Lemma 3.2 and Theorem 3.3 we obtain tB@E) is atomic. Thus
if S(E) is a Boolean algebra, then there exists a stat&(@) which gives by
Theorem 5.2 that

On every complete atomi®)-continuous effect algebra E with(E) being a
Boolean algebra there exists &n)-continuous state

Important example of such an effect algebra is every complete atéiviic
-effect algebraN1V -algebra)E. It is because in aMV -effect algebre&E we have
S(E) =C (E), whereC(E) is a center o, which is a Boolean algebra (Greechie
etal., 1995). Really, ife C (E)then 1= (1A 2) v (LA Z) = zVv Z, which gives
znZ =0 and hence e S(E). Conversely, ifze S(E) thenzA Z = 0, which
giveszv Z = 1landhence asisdistributivex =1 A X = XA (zVZ) = (XA2) Vv
(x A Z), which ze C(E). Since everyMV-effect algebra isd)-continuous (by
Lemma 2.3, (ii)) we obtain that

On every complete atomic MV-effect algelifdV-algebrg there is an(0)-
continuous state

Further example of a lattice effect algebra wBfE) = C(E) is every dis-
tributive effect algebra. By Theorem 5.2,

On every distributive complete atomic effect algebra there igodTontinuous
state
6.4. Complete Atomic Modular Effect Algebras

In RieCanowd (2001d) it was shown that every complete atomic modular
effect algebreE is (0)-continuous, henc& satisfies conditions of Theorem 5.2,
Moreover, in suchk the S(E) is a complete modular atomic ortholattice. Bf
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l=a&b=2c

Fig. 2. Modular effect algebra admitting nonsubadditive states 0

is separable thei®(E) is also separable and by Raxlowd (1998) there is an
(0)-continuous faithful state o8(E). It follows, by Theorem 5.2 that there is an
(0)-continuous faithful state ok (see Rieanow, 2001d).

7. CONCLUDING REMARKS

A statew on a lattice effect algebr& is called avaluationif for all a,
be Ew(aVvb) +w(@Ab) =w(@) + o). It was proved in Rieanowd (2001d)
that a stater on E is a valuation iffw is subadditive, i.ep(a Vv b) < w(a) + w(b)
forall a, b e E. Moreover, if a faithful valuation on a lattice effect algeli@xists
thenE is modular. Next example shows that if in Theorem 5.2 a stade S(E)
is subadditive (hence a valuation) then the s@amonstructed in the proof need
not be subadditive ok even if E is modular.

Example. Let E={0,a, b, c, 1} be a modular effect algebra in which=la &

b =2c (Fig. 2). ThenS(E) = {0,a, b, 1} and sow: S(E) — [0, 1] such that
w(@) = 1, w(b) = £, w(0) = 0, andw(1) = 1 is a subadditive state d&(E). But
®:E — (0,1 such thatw|S(E) = w andw(c) = % is not subadditive because
w(a) + o(c) < w(av c). Nevertheless, there is a unique valuationEmamely

m(a) = m(b) = m(c) =  andm(0) = 0, m(1) = 1.
ACKNOWLEDGMENT

This research was supported by Grant No. 1/7625/20 of the Ministry of Ed-
ucation of the Slovak Republic.

REFERENCES

Bennett, M. K. and Foulis, D. J. (1995). Phi-symmetric effect algebfasndations of Physicg5,
1699-1722.

Cattaneo, G., Dalla Chiara, M. L., Giuntini, R., and Pulmarm@&. (2000). Para-Boolean manifolds.
Internationallournal of Theoretical Physic39, 551-570.



1524 Riecanowd

Chang, C. C. (1958). Algebraic analysis of many-valued logimnsactions of the American Mathe-
matical Society88, 467—490.

Dvurecenskij, A. and Pulmannay’S. (2000)New Trends in Quantum Structuréduwer Academic,
Boston.

Foulis, D. and Bennett, M. K. (1994). Effect algebras and unsharp quantum Iégiosdations of
Physics24, 1331-1352.

Gratzer, G. (1998)General Lattice Theory2nd edn., Birkauser Verlag, Boston.

Greechie, R. J. (1971). Orthomodular lattices admitting no stadesnal of Combinatorial Theory A
10, 119-132.

Greechie, R. J., Foulis, D., and Pulmanap®. (1995). The center of an effect algel®ader 12,
91-106.

Gudder, S. (1998)S-dominating effect algebrasnternational Journal of Theoretical Physi&,
915-923.

Jerca, G. (2001). Blocks of homogeneous effect algebBadletin of the Australian Mathematical
Society64, 81-98.

Jerta, G. and Rieanow, Z. (1999). On sharp elements in lattice ordered effect algeBtaSEFAL
80, 24-99.

Kalmbach, G. (1983)0rthomodular LatticesAcademic Press, London.

Kdpka, F. (1992)D-posets of fuzzy set3atra Mountains Mathematical Publicatioris 83—87.

Kopka, F. and Chovanec, F. (1998)-posetsMathematica Slovaca4, 21-34.

Kdpka, F. and Chovanec, F. (1995). Booldasposetsinternational Journal of Theoretical Physics
34,1297-1302.

Lazar, V. and Marinoa; |. (2001). Lattice effect algebras with total operatialmirnal of Electrical
Engineerings2, (10/s) 59-62.

Ptak, P. and Pulmanay’S. (1991)0rthomodular Structures as Quantum Logissuwer Academic,
Publishers, Dordrecht, Boston, London.

RieCanow, Z. (1998). Order-topological separable complete modular ortholattices admit order contin-
uous faithful valuationsProceedings of the American Mathematical Socigig 231-237.

RieCanow, Z. (2000a). MacNeille completions Bf-posets and effect algebrasternational Journal
of Theoretical Physic89, 859-869.

Riecanow, Z. (2000b). Generalization of blocks f@r-lattices and lattice ordered effect algebras.
International Journal of Theoretical Physi&9, 231-237.

Riecanow, Z. (2001a). Sharp elements in effect algehrasrnational Journal of Theoretical Physics
40, 913-920.

Riecanow, Z. (2001b). Proper effect algebras admitting no stiéarnational Journal of Theoretical
Physics40, 1683-1691.

Riecanow, Z. (2001c). Lattice effect algebras with (0)-continuous faithful valuatibnszy Sets and
Systemd 24, 321-327.

RieCanowd, Z. (2001d). Continuous effect algebra admitting order-continuous states (preprint),
www.elf.stuba.sk/“jenca/preprint.

Riecanow, Z. (2001e). Orthogonal sets in effect algebEssmonstratio Mathematic24(3), 525-532.



